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1. Abstract
Quantum Error Correction (QEC) is necessary for fault-tolerant quantum circuits, and
a formalization of these codes is especially important in the face of large-scale quantum
computing. In this paper, we present a formal verification of QEC semantics in CoQ based on
the main paper [1] that uses stabilizers as a predicate. We draw from the SQIR and QuantumLib
codebases to provide the necessary mathematical and quantum foundations to do so.

2. Introduction
2.1. Overview of QEC
From the survey paper [2], there are three major types of errors that arise in quantum
computing. Measurement errors are addressed by running an algorithm repeatedly to
exponentially decrease their error probability. Hardware errors introduce bit errors or local
phase changes in quantum circuits. Software bugs have been detected by encoding assertions/
invariants and model checking in the circuit or using QHL.

We formalize the error-correcting codes for the second type of error. We utilize the SQIR [3]
and QuantumLib [4] codebases to hash out the operational semantics in CoQ. This codebase
was chosen for various reasons. Looking into the open-source code shows that despite its
recent development, it has already verified algorithms such as Deutch-Josza, Grover’s, Phase
Estimation and properties of Shor’s algorithm. In addition, SQIR has clean notation reflecting
a quantum setting that transfers directly to CoQ proofs.

In the rest of this paper, we first discuss the result of researching existing models of quantum
error correction. We then explain the syntax and semantics of our model, and formalize it
in CoQ. We import the utility methods from SQIR and QuantumLib to provide the background
mathematical structures and theorems for our selected model. We walk through the design
of our implementation, then discuss potential future work such as application to concrete
examples as a demonstration.

2.2. Overview of Syntax & Semantics
We adapt our Quantum Error Correction CoQ Protocol from the following paper [1].

Quantum circuits can be designed from gates and qubits. Operations include initialization of
qubits, measurement of qubits, and gate operations on qubits. The paper abstracts quantum
circuits with all of their complexity into a simple, IMP-like syntax, called QECV-Lang.
Like IMP, QECV-Lang has commands for variable assignment, sequences of commands, if
conditionals, while loops, and “skip” for termination. In order to actually apply IMP to
Quantum programs, we replace the notion of variables with qubit states. To apply IMP to
Quantum Error Correction, we also add in a new type of variable called “stabilizers”, because
their result depends on the state of the qubit we desire to correct.
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Inductive stabilizer : unitary -> Prop :=
| eigenstate: forall ψ A, stabilizer_pair ψ A -> stabilizer A.

Listing 1:  Stabilizer formalism proposed in main paper

This syntax then comes with operational semantics largely similar to IMP, with the change
that qubits are modified by a Unitary rule (representing unitary evolution). This way, we
model the fact that qubits cannot be naively cloned. Stabilizers, on the other hand are treated
as normal variables, under the assumption that a real quantum circuit can use arbitrarily
pre-designed unitary gates. As a result, stabilizers are given an Assignment rule. Finally, in
order to model both the results of error correction and the requirement of measurement to
gain classical information from a quantum system, the if and while commands are modified
to include both stabilization and measurement in their evaluation.

Through the combination of this syntax and modified semantics, we gain a sufficiently
powerful DSL to model QEC. The focus of our implementation was on this syntax and
semantics, but the paper also proceeded to derive Hoare logic for QEC as well.

3. Implementation
We implement the operational semantics formalization of QECV-Lang, and opted to
implement the evaluation of stabilizers using denotational semantics.

Inductive step :
QECV_Lang * (qubit_state * stabilizer_map) ->
QECV_Lang * (qubit_state * stabilizer_map) ->
Prop

Listing 2:  State of a program

The state of the program is represented as a 2𝑛 × 2𝑛 density matrix over all 𝑛 qubits; this
will capture the state of all 𝑛 qubits at once. The state also contains a map of stabilizer
variables to stabilizer values (as strings of Pauli Matrices, or alternatively unitary matrices),
akin to how we used a map of variables to naturals in IMP to represent values of variables.

3.1. Operational Semantics of QECV-Lang
The bulk of our work is done on operational semantics, based on the main paper [1].
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Figure 1:  Original semantic rules defined in QECV-Lang.

Here is an overview of how we implemented these rules in CoQ.

• Instead of having a separate empty program 𝐸, we instead reuse skip as the empty/
terminal program. This does not affect the overall results of execution, but simply reduces
one unnecessary rule.

• To initialize a qubit to a fixed value, we trace out the given qubit in the density mtarix
to replace its state with the zero state, and update the qubit state matrix.

• To apply a unitary transformation, we perform multiplication of the current state 𝜌 and
the unitary matrix 𝑈  to arrive at the new state 𝜌′: 𝜌′ ≔ 𝑈𝜌𝑈†.

• To assign a stabilizer variable to a new value given an expression for the new value, we use
the denotational semantics of the stabilizer expression language (below) to evaluate the
expression given the current state of the program, and then update the stabilizer map to
contain this new value for the given variable; this is very similar to the variable assignment
rules of IMP.

• The rule for evaluation of a Seq of two instructions is identical to the evaluation rule for
Seq in IMP: we either step the first subprogram once if it can step, and if it is skip we
reduce the Seq to just the second subprogram and continue.

• The condition for a conditional statement (if and while) is a measurement of a stabilizer
variable on the current state of the program to see if the qubitstate is in the +1 or −1
eigenstate of the stabilizer variable (which is some unitary matrix). The evaluation of
if and while statements after resolving the condition matches the evaluation of their
counterparts in IMP almost exactly.
‣ If the program is in the +1 eigenstate, then no correction is required and the program

proceeds down the “true” branch.
‣ If the program is in the −1 eigenstate, then an error correction is applied to restore the

qubit state and then the program proceeds down the “false” branch.
‣ With if statements, the “true” branch corresponds to reducing to the first subprogram,

and the “false” branch corresponds to reducing to the second program.
‣ With while statements, the “true” branch converts the current program to a sequence

of the body, followed by the while statement again, and the “false” branch reduces to
skip immediately.
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3.2. Denotational Semantics of Stabilizer Expressions
A stabilizer expression in this language consists of a few variants:
• An expression can be a fixed unitary (a string of Pauli matrices)
• A phase shift of another expression (multiplication by 𝑖, −1, or −𝑖)
• A lookup of a stabilizer variable.

To evaluate these expressions to a stabilizer value, which is a final unitary, we use denotational
semantics with the following cases: Given a stabilizer expression and a current stabilizer
variable map,
• A fixed unitary expression evaluates to itself
• A phase shift of another expression evaluates to the denotation of that expression

(recursively evaluated) multiplied by the phase shift of the expression
• A lookup of a stabilizer variable corresponds to a map lookup in the stabilizer map.

4. Conclusion and Future Work
In the future, we would like to include examples of how our algorithm works. The simplest
encoding would be a three-bit repetition code, which contains one bit flip error to be detected
and corrected by our system.

Figure 2:  𝑋 error on qubit 𝑞1

Currently, our system only supports two-dimensional qubits. Extending this to
multidimensional qubits would require a second parameter and slightly longer proofs.

4.1. Notes on Compilation
Our setup runs on CoQ version 8.16, voqc (SQIR) version 4.13.1 and QuantumLib version
1.1.0. For SQIR and QuantumLib dependencies, we follow the instructions given in README.md
[3], [4] . Our repository can be found here.
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