

Peaked Boson Sampling: towards efficiently verifiable and NISQ-able quantum advantage

Michelle Ding

April 28th, 2025

Overview

- Introduction
- Related Work
- Our Work
 - o Analytical Results
 - o Experimental Results
- Remarks and Future Work

Introduction

- Quantum computing = solving hard problems based on quantum mechanics
 - decision problems
 - o promise problems
 - sampling problems
 - RCS, BosonSampling

• qubits, gates, and measurement

qubits, gates, and measurement

• qubits, gates, and measurement

qubits, gates, and measurement

qubits, gates, and measurement

entanglement, superposition, interference phenomena

qubits, gates, and measurement

entanglement, superposition, interference phenomena

 $n \text{ qubits } \rightarrow 2^n \text{ basis states}$

qubits, gates, and measurement

entanglement, superposition, interference phenomena

 $n \ qubits \rightarrow 2^n \ basis \ states$

$$\frac{|000000\rangle + |000001\rangle + \dots + |111111\rangle}{2^n} \xrightarrow{M} |000001\rangle$$

qubits, gates, and measurement

entanglement, superposition, interference phenomena

 $n \text{ qubits } \rightarrow 2^n \text{ basis states}$

$$\frac{|000000\rangle + |000001\rangle + \dots + |111111\rangle}{2^n} \xrightarrow{M} |000001\rangle$$

Sampling

• Input: A classical description of an n-qubit quantum circuit U and probability distribution $P(x) = |\langle x|U|0^n\rangle|^2$, classically sample from $P' \approx P$

Boson Sampling

Ex. of a linear optical setup

Galton board showing the indistinguishability of bosons

$$\Pr_{D_U}[S] = |\langle 1_n | \varphi(U) | S \rangle|^2 = \frac{|\operatorname{Per}(U_{S,S})|^2}{s_1! \, s_2! \cdots s_m!}$$

BosonSampling complexity as a function of the permanent

Boson Sampling

Ex. of a linear optical setup

Galton board showing the indistinguishability of bosons

$$\Pr_{D_U}[S] = \langle 1_n \varphi(U) | S \rangle|^2 = \frac{|\operatorname{Per}(U_{S,S})|^2}{s_1! \, s_2! \cdots s_m!}$$

BosonSampling complexity as a function of the permanent

Boson Sampling

Ex. of a linear optical setup

Galton board showing the indistinguishability of bosons

$$\Pr_{D_U}[S] = |\langle 1_n \varphi(U) | S \rangle|^2 = \frac{|\operatorname{Per}(U_{S,S})|^2}{s_1! \, s_2! \cdots s_m!}$$

BosonSampling complexity as a function of the permanent

Examples of Peaked Circuits

Definition 1.5: Grover's Algorithm

Let $f: \{0,1\}^n \to \{0,1\}$ and one marked item x^* such that $f(x^*) = 1$.

Definition 3.4: Shor's Factoring Algorithm

Let an integer $N = p \cdot q = 2^n$. Note p, q are primes and n is the number of bits used to represent N.

<u>Context:</u> Factoring is presumably hard, so used in modern cryptography systems ft. the RSA protocol

<u>Claim:</u> Consider a function $f(x) = a^x \pmod{N}$. Then computing the period of f(x) allows us to factor N.

Denote U_f as the oracle computing f(x): $U_f|x\rangle|0^{\otimes n}\rangle = |x\rangle|f(x)\rangle$.

Examples of Peaked Circuits

Peaked Interferometers

• We say an interferometer U is δ -peaked if:

$$\max_{s \in \Phi_{m,n}} |\langle s | \varphi(U) | 1_n \rangle|^2 \ge \delta$$

- Where $\Phi_{m,n}$ are basis vectors, $|1_n\rangle$ is the input Fock state and $\varphi(U)$ is the homomorphism described by [AA10].
- Let the max arg be s'. Giving s' to a classical verifier enables efficient verification.

A convincing demonstration should ideally be:

- (NISQable) It can be implemented **efficiently** with a feasible quantum experiment.
- (IPQA) It is **provably** classically hard to solve.
- (Eff. Verifiable) The solution can be

verified efficiently on a classical device.

[AZ24]

A convincing demonstration should ideally be:

- (NISQable) It can be implemented **efficiently** with a feasible quantum experiment.
- (IPQA) It is **provably** classically hard to solve.
- (Eff. Verifiable) The solution can be

verified efficiently on a classical device.

[AZ24]

A convincing demonstration should ideally be:

- 1. (NISQable) It can be implemented **efficiently** with a feasible quantum experiment.
- 2. (IPQA) It is **provably** classically hard to solve.
- 3. (Eff. Verifiable) The solution can be

verified efficiently on a classical device.

[AZ24]

Searching for Structure

- Generating **peaked** but **hard-to-sample** from **linear optical** distributions
- Explicitly-peaked structures
- Postselected linear optical networks
- We study this numerically

- Efficiently Verifiable Peaked Circuit Sampling [AZ24]
- Complement Sampling [BBW25]

Analytical Results

O(mn) peaking gates are sufficient to produce optimal peakedness.

Proof:

Theorem 45 (Parallelization of Linear-Optics Circuits) Given any $m \times m$ unitary operation U, one can map the initial state $|1_n\rangle$ to $\varphi(U)|1_n\rangle$ using a linear-optical network of depth $O(n \log m)$, consisting of O(mn) beamsplitters and phaseshifters. [AA10]

Upper bounded by a quadratic number of gates!

In comparison, the circuit model requires an exponential number of gates:

Theorem 1.3: Solovay-Kitaev

Most unitaries $U \in U(2^n)$ require an exponential number of gates from any gate set G to implement it within some tolerance ϵ . The maximal number of minimal gates, aka the circuit complexity upper bound is

$$C_{\epsilon}(U) \le \frac{4^n}{\log|G|}\log\left(\frac{1}{\epsilon}\right)$$

• Furthermore, we can optimize this to O(m) gates

Claim 2. A network of O(t) nonlocal peaking gates acting on mode 0 and mode $i \in [2, t]$ can transfer amplitude from the other t-1 modes to mode 0.

• Simply tune the beamsplitter parameters to transfer amplitude.

$$B(\theta, \phi) = \begin{bmatrix} \cos(\theta) & -e^{-i\phi}\sin(\theta) \\ e^{i\phi}\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\Rightarrow B_{1,i} = \frac{|a_1|}{\sqrt{|a_1|^2 + |a_i|^2}} \begin{bmatrix} 1 & -\frac{a_2^*}{a_1^*} \\ -\frac{a_2}{a_1} & 1 \end{bmatrix}$$

• Furthermore, we can optimize this to O(t) gates

Claim 2. A network of O(t) nonlocal peaking gates acting on mode 0 and mode $i \in [2, t]$ can transfer amplitude from the other t-1 modes to mode 0.

• Simply tune the beamsplitter parameters to transfer amplitude.

$$B(\theta, \phi) = \begin{bmatrix} \cos(\theta) & -e^{-i\phi}\sin(\theta) \\ e^{i\phi}\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\Rightarrow B_{1,i} = \frac{|a_1|}{\sqrt{|a_1|^2 + |a_i|^2}} \begin{bmatrix} 1 & -\frac{a_2^*}{a_1^*} \\ -\frac{a_2}{a_1} & 1 \end{bmatrix}$$

• Furthermore, we can optimize this to O(t) gates

Claim 2. A network of O(t) nonlocal peaking gates acting on mode 0 and mode $i \in [2, t]$ can transfer amplitude from the other t-1 modes to mode 0.

• Simply tune the beamsplitter parameters to transfer amplitude.

$$B(\theta, \phi) = \begin{bmatrix} \cos(\theta) & -e^{-i\phi}\sin(\theta) \\ e^{i\phi}\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\Rightarrow B_{1,i} = \frac{|a_1|}{\sqrt{|a_1|^2 + |a_i|^2}} \begin{bmatrix} 1 & -\frac{a_2^*}{a_1^*} \\ -\frac{a_2}{a_1} & 1 \end{bmatrix}$$

Experimental Setup

• We use the optics construction from Claim 2. for SGD experiments.

Experimental Setup

• We use the optics construction from Claim 2. for SGD experiments.

Experimental Setup

• We use the optics construction from Claim 2. for SGD experiments.

STR∧WBERRY FIELDS

Explicitly-peaked structures

Two different cost functions:

Explicitly-peaked structures

Overlay of the two graphs

Postselection

- What we really want is to examine <u>naturally</u> peaked interferometers
- Peaked random circuits are exponentially rare! ¹ Postselection impossible to analyze numerically
- But with linear optics the system size is smaller and unitaries scale with direct product! Vague intuition for why it would be simpler

Theorem 2.2 (Probability of finding peaked circuits in an well-spread circuit ensemble). Let P_{δ} be the probability of finding a δ -peaked circuit in a well-spread ensemble. Then $P_{\delta} = O(\frac{1}{\delta^2 2^n})$.

Single-shot instances

Collision probability and entropy of a post-selected circuit

Single-shot instances

Collision probability and entropy of an explicitly-peaked circuit

Single-shot instances

Collision probability and entropy of an explicitly-peaked circuit

Probability of photon occupation in each mode, generated for $\delta = 0, 0.2, 0.4, 06, 0.8$

Collision probability (π) and Shannon entropy (S) as a function of circuit depth

For probability distribution *P*,

$$\pi = \sum_{s} P(s)^2$$

$$\pi = \sum_{s} P(s)^{2}$$

$$S = -\sum_{s} P(s) \log P(s)$$

- 1. Our experiment(s) combine the linear optical setup of Boson Sampling with the efficiently verifiable properties of peaked circuits.
- 2. We use an interferometer setup to generate random networks.
- 3. We then use stochastic gradient descent to optimize over the peaking layer of the constructed circuit.
- 4. Finally, we examine the entropy and collision probability over time of post selected random beamsplitter networks.

Contributions

- 1. First framework to delve into peaked + linear optical systems.
- 2. Replicate experimental results from [AZ24].
- 3. Observe new behavior such as peaked interferometers converging to the same statistical values as random linear optical ones.
- 4. Code: https://github.com/michelled01/Peaked-circuits

- IF
- [Yuxuan & I] Efficiently supporting larger simulation spaces
- [Nirkhe] At what depth do *t*-designs form in linear optical settings?
- Do linear optical networks anticoncentrate? If so, at what depth?
- Reflection matrices ⇒ higher frequency of Grover-like circuits?
- Orthogonal gates ⇒ better peaking?
- Calculating the operator norm between regions of explicitly peaked circuits

- [Yuxuan & I] Efficiently supporting larger simulation spaces
- [Nirkhe] At what depth do *t*-designs form in linear optical settings? [CHH+24] section 5.2.1
- Do linear optical networks anticoncentrate? If so, at what depth? [DHJB22]
- Reflection matrices ⇒ higher frequency of Grover-like circuits?
- Orthogonal gates ⇒ better peaking?
- Calculating the operator norm between regions of explicitly peaked circuits

- [Yuxuan & I] Efficiently supporting larger simulation spaces
- [Nirkhe] At what depth do *t*-designs form in linear optical settings? [CHH+24] section 5.2.1
- Do linear optical networks anticoncentrate? If so, at what depth? [DHJB22]
- Reflection matrices ⇒ higher frequency of Grover-like circuits?
- Orthogonal gates ⇒ better peaking?
- Calculating the operator norm between regions of explicitly peaked circuits

- [Yuxuan & I] Efficiently supporting larger simulation spaces
- [Nirkhe] At what depth do *t*-designs form in linear optical settings? [CHH+24] section 5.2.1
- Do linear optical networks anticoncentrate? If so, at what depth? [DHJB22]
- Reflection matrices ⇒ higher frequency of Grover-like circuits?
- Orthogonal gates ⇒ better peaking?

Calculating the operator norm between regions of explicitly peaked circuits

References

- [AA10] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. 2010.
- [AZ24] Scott Aaronson and Yuxuan Zhang. On verifiable quantum advantage with peaked circuit sampling, 2024.
- [BGL23] Sergey Bravyi, David Gosset, and Yinchen Liu. Classical simulation of peaked shallow quantum circuits, 2023.
- [BBW25] Marcello Benedetti, Harry Buhrman, and Jordi Weggemans. Complement sampling: Provable, verifiable and nisqable quantum advantage in sample complexity, 2025.
- [CHH+24] Chi-Fang Chen, Jeongwan Haah, Jonas Haferkamp, Yunchao Liu, Tony Metger, and Xinyu Tan. Incompressibility and spectral gaps of random circuits, 2024.
- [DHJB22] Alexander M. Dalzell, Nicholas Hunter-Jones, and Fernando G. S. L. Brandão. Random quantum circuits anticoncentrate in log depth.
- [BGL23b] Sergey Bravyi, David Gosset, and Yinchen Liu. Classical simulation of peaked shallow quantum circuits, 2023.
- [SSA+21] Aakarshitha Suresh, Abdullah Ash Saki, Mahabubul Alam, Rasit o Topalaglu, and Swaroop Ghosh. A quantum circuit obfuscation methodology for security and privacy, 2021.

Thanks for listening!