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Introduction

● Quantum computing = solving hard problems based on quantum mechanics

○ decision problems

○ promise problems

○ sampling problems

■ RCS, BosonSampling
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The standard circuit model

● qubits, gates, and measurement

𝑡𝑖𝑚𝑒

𝑘 layers/timesteps
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Sampling

● Input: A classical description of an 𝑛-qubit quantum circuit 𝑈

and probability distribution 𝑃 𝑥 = 𝑥ۦ| 𝑈 ۧ0𝑛 |2,

classically sample from 𝑃′ ≈ 𝑃

[BGL23b] 
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Ex. of a linear optical setup

Boson Sampling

Ex. of a beamsplitter network

Galton board showing the 
indistinguishability of bosons

BosonSampling complexity as a 
function of the permanent

Pr𝐷𝑈
𝑆 = | 1𝑛 𝜑 𝑈 |𝑆 |2 =

|Per 𝑈𝑆,𝑆 |2

𝑠1! 𝑠2! ⋯ 𝑠𝑚!

[AA10]

[AA10]



14

Ex. of a linear optical setup

Boson Sampling

Ex. of a beamsplitter network

Galton board showing the 
indistinguishability of bosons

BosonSampling complexity as a 
function of the permanent

Pr𝐷𝑈
𝑆 = | 1𝑛 𝜑 𝑈 |𝑆 |2 =

|Per 𝑈𝑆,𝑆 |2

𝑠1! 𝑠2! ⋯ 𝑠𝑚!

[AA10]

[AA10]



15

Ex. of a linear optical setup

Boson Sampling

Ex. of a beamsplitter network

Galton board showing the 
indistinguishability of bosons

BosonSampling complexity as a 
function of the permanent

Pr𝐷𝑈
𝑆 = | 1𝑛 𝜑 𝑈 |𝑆 |2 =

|Per 𝑈𝑆,𝑆 |2

𝑠1! 𝑠2! ⋯ 𝑠𝑚!

[AA10]

[AA10]



16

Examples of Peaked Circuits



Quantum algorithms

Inverse sequences of 
gates

Random gates

Circuit 
obfuscations
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Examples of Peaked Circuits
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Peaked Interferometers

● We say an interferometer U is 𝛿-peaked if:

● Where Φ𝑚,𝑛 are basis vectors, ۧ|1𝑛 is the input Fock state and 𝜑 𝑈 is the 

homomorphism described by [AA10]. 

● Let the max arg be s’. Giving s’ to a classical verifier enables efficient verification.

max𝑠𝜖Φ𝑚,𝑛
| 𝑠 𝜑 𝑈 |1𝑛 |2 ≥ 𝛿
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𝑥

𝑥|𝐶ۦ| ۧ|0𝑛 |2
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𝑠′
𝑥

𝑥|𝐶ۦ| ۧ|0𝑛 |2
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Quantum Advantage

A convincing demonstration should ideally be:

1. (NISQable) It can be implemented efficiently with a feasible quantum experiment.

2. (IPQA) It is provably classically hard to solve. 

3. (Eff. Verifiable) The solution can be 

verified efficiently on a classical device.

[AZ24]
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Searching for Structure

● Generating peaked but hard-to-sample from linear optical distributions

● Explicitly-peaked structures

● Postselected linear optical networks 

 We study this numerically
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Related Work

● Efficiently Verifiable Peaked Circuit Sampling [AZ24]

● Complement Sampling [BBW25]

[AZ24] replication [BBW25]
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Analytical Results

● O(mn) peaking gates are sufficient to produce optimal peakedness.

Proof:

● Upper bounded by a quadratic number of gates!

[AA10]
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Analytical Results

● In comparison, the circuit model requires an exponential number of gates:
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Analytical Results

● Furthermore, we can optimize this to O(m) gates

● Simply tune the beamsplitter parameters to transfer amplitude.
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Experimental Setup

● We use the optics construction from Claim 2. for SGD experiments.
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Explicitly-peaked structures

● Two different cost functions:
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Explicitly-peaked structures

● Overlay of the two graphs
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Postselection

● What we really want is to examine naturally peaked interferometers

● Peaked random circuits are exponentially rare! 1 Postselection impossible to 

analyze numerically

● But with linear optics the system size is smaller and unitaries scale with direct 

product! Vague intuition for why it would be simpler

1
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Single-shot instances

Collision probability and entropy of a post-selected circuit
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Single-shot instances

Collision probability and entropy of an explicitly-peaked circuit
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Single-shot instances

Collision probability and entropy of an explicitly-peaked circuit
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Distribution of peakedness

Probability of photon occupation in each mode, 

generated for 𝛿 = 0, 0.2, 0.4, 06, 0.8
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Additional Metrics

Collision probability (𝜋) and Shannon entropy (S) as a function of circuit depth

𝜋 = ෍

𝑠

𝑃(𝑠)2

𝑆 = − ෍

𝑠

𝑃 𝑠 log 𝑃(𝑠)

For probability distribution 𝑃,
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Summary

1. Our experiment(s) combine the linear optical setup of Boson Sampling with the 

efficiently verifiable properties of peaked circuits. 

2. We use an interferometer setup to generate random networks. 

3. We then use stochastic gradient descent to optimize over the peaking layer of 

the constructed circuit. 

4. Finally, we examine the entropy and collision probability over time of post 

selected random beamsplitter networks. 
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Contributions

1. First framework to delve into peaked + linear optical systems. 

2. Replicate experimental results from [AZ24].

3. Observe new behavior such as peaked interferometers converging to the same 

statistical values as random linear optical ones.

4. Code: https://github.com/michelled01/Peaked-circuits

https://github.com/michelled01/Peaked-circuits
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Future Work

● [Yuxuan & I] Efficiently supporting larger simulation spaces

● [Nirkhe] At what depth do 𝑡-designs form in linear optical settings?

● Do linear optical networks anticoncentrate? If so, at what depth? 

● Reflection matrices ⇒ higher frequency of Grover-like circuits?

● Orthogonal gates ⇒ better peaking?

● Calculating the operator norm between regions of explicitly peaked circuits
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Thanks for listening!


